

WWW.AVI.AT

PUNCHING SHEAR REINFORCEMENT DE+DKD

A QUICK SOLUTION TO COVER SHEAR FORCES IN SLABS WITH PUNCHING SHEAR ELEMENTS AND DOUBLE-HEADED STUDS

PATENTED

A PUNCHING SHEAR REINFORCEMENT FOR THE SUPPORT AREA OF FLAT SLABS

DESCRIPTION

Punching shear elements^{DE} are V-shaped mesh-like (or ladderlike) reinforcing elements, which are produced industrially by electric resistance welding similar to the production of reinforcing wire fabrics. The wire used for both the chords and the vertical bars is reinforcing steel B500A according to ÖNORM B 4707.

These elements are manufactured in various heights and leg lengths and can be used generally as punching shear reinforcement in all types of reinforced concrete slabs.

If higher punching shear resistance is required, punching shear elements ^{DE} will be combined with double-headed studs ^{DKD}. These studs with forged heads on both ends are made of ribbed reinforcing steel B500. The stud diameter is 10 mm for all heights and the stud head diameter is 30 mm. The new punching shear reinforcement ^{DE+DKD} – punching shear elements ^{DE} or the combination of punching shear elements ^{DE} und double-headed studs ^{DKD} – is especially suited as punching shear reinforcement in the support area of slabs resting directly on columns (flat slabs).

Dimensions (mm) h_{DE} , *I*... outside dimensions

Fig. 1: Punching shear element DE and its dimensions

Fig. 2: Pair of double-headed studs DKD and its dimensions

SYSTEM AND LOAD-BEARING BEHAVIOUR

The vertical bars of punching shear elements^{DE} are arranged at a small distance and provide some sort of "close stitches" to the slab section subject to punching. As a result, high shear forces in the loading area can be distributed to a very high number of thin vertical bars and, at the same time, the area subject to punching will be increased. The vertical bars are anchored in the tension and compression zone of the slab by two welding points at the double chords on top and at bottom. Transfer of forces to the flexural reinforcement is ensured by the double chords, as well. If required, double-headed studs provide strengthening in the area subject to the highest punching shear stress (approx. up to 1.5 × d from the edge of support). Due to their forged heads they are anchored very well at the level of the flexural reinforcement layers.

Design of punching shear reinforcement **DE+DKD** is based on the standards EN 1992-1-1 and ÖNORM B 1992-1-1. Slight deviations of the design concept from these standards can be found in the Technical Guidelines.

Punching shear resistance of DE with *K* ≤ 1.65

If it is sufficient to increase the punching shear resistance $V_{Rd,c}$ of an unreinforced flat slab by up to 65% (K_{max} = 1.65), only punching shear elements ^{DE} are used as reinforcement. In this case, the calculation of the inner reinforcement perimeters (approx. 1.5 × d from the edge of support) is decisive for determining the required cross-sectional area $a_{sw,req}$. According to ÖNORM B 1992-1-1, the cross-sectional area $a_{sw,req}$ in this portion of the slab has to be increased by 60%.

Punching shear resistance of DE+DKD with $1.65 < K \le 1.96$

A combination of punching shear elements ^{DE} and double-headed studs ^{DKD} will be used if the loads require a higher loadbearing capacity (K>1.65). Punching shear elements ^{DE} usually are designed without increasing the cross section by 60% and, therefore, are designed only for the area outside the inner control perimeter at 1.5 × d from the edge of support. Double-headed studs ^{DKD} are used to cover the reinforcement a_{sw,req} required by ÖNORM B 1992-1-1 at the inner reinforcement perimeters. Depending on the actual situation, however, a portion of this inner reinforcement could be provided by punching shear elements ^{DE}.

PLACING OF PUNCHING SHEAR ELEMENTS DE ($K \le 1.65$)

Punching shear elements ^{DE} are placed between the lower and upper layers of flexural reinforcement and thus, they also serve as spacers. Usually, at least eight elements each with an opening angle of 22.5° are placed in the column head area in a rotationally symmetrical arrangement. The type of punching shear element ^{DE} depends on the slab thickness. With one row of elements, the outer diameter of the starshaped shear reinforcement is defined by the leg length of the individual element.

By sliding punching shear elements **DE** into one another a rotationally symmetrical double-row arrangement can be achieved, which provides an increased cross-sectional area of punching shear reinforcement. By increasing the distance between the two rows, however, the outer control perimeter can be enlarged.

PLACING OF ADDITIONAL DOUBLE-HEADED STUDS (1.65 $< K \le$ 1.96)

If 1.65 < K \leq 1.96, double-headed studs ^{DKD} are required in addition to the punching shear elements DE. After placing of reinforcement has been completed, pairs of double-headed studs DKD (see fig. 7) are inserted from above. The top edge of the stud head is flush with the outer edge of the top reinforcement layer. The studs must be tied to the flexural reinforcement in order to ensure that they stay in place during concreting. Placement of double-headed studs DKD is independent of placement and number of punching shear elements ^{DE}.

Fig. 7: Cross section of a slab with DE+DKD

The optimal element heights result in:

$$h_{\rm DE} = h_{\rm slab} - \sum c_{\rm nom} - \sum \emptyset_{\rm p}$$

 $h_{\rm de}$ height of punching shear element DE h_{dkd} height of double-headed stud DKD overall depth of slab $h_{\scriptscriptstyle {\rm slab}}$ nominal concrete cover Cnom

$$h_{\text{DKD}} = h_{\text{slab}} - \Sigma c_{\text{nom}}$$

sum of nominal concrete covers at the top and bottom sum of thickness of top and bottom reinforcement layers Please mind that ribbed bars usually require more space than their nominal diameter (see ÖNORM B 1992-1-1, 11.2.2).

∑C_{nom}

∑Øp

TYPES

Punching shear elements ^{DE} come in heights from 100 to 320 mm. They can be used to increase the bearing capacity of reinforced concrete members with an overall depth of 200 mm to maximum 450 mm.

	Height	Chords	Vertical Bars		Elements	
Туре	h _{de}	Ø	Ø	Distance	Leg Length <i>l</i>	Weight
	mm	mm	mm	mm	mm	kg
DE 100	100	6.0	6.0	50	600	1.60
DE 120	120	6.0	6.0	50	600	1.71
DE 140	140	6.0	6.0	50	600	1.81
DE 160	160	6.0	6.0	50	700	2.24
DE 180	180	6.0	6.0	50	700	2.36
DE 200	200	6.0	6.0	50	700	2.49
DE 220	220	6.0	6.0	50	850	3.17
DE 240	240	6.0	6.0	50	850	3.32
DE 260	260	6.0	6.0	50	850	3.47
DE 280	280	6.0	6.0	50	1000	4.26
DE 300	300	6.0	6.0	50	1000	4.44
DE 320	320	6.0	6.0	50	1000	4.62

Weight and dimensional tolerances as per ÖNORM B 4707

Double-headed studs ^{DKD} come in heights from 140 to 360 mm. Like punching shear elements ^{DE}, they can be used to increase the bearing capacity of reinforced concrete members with an overall depth of 200 mm to maximum 450 mm.

	Height	Flat Bar	Do	ouble-headed Stud Pa	air
Туре	h _{dkd}	l	Shaft ø	Head Ø	Distance e _{DKD}
	mm	mm	mm	mm	mm
DKD-P 140	140	165	10	30	105
DKD-P 160	160	180	10	30	120
DKD-P 180	180	195	10	30	135
DKD-P 200	200	210	10	30	150
DKD-P 220	220	225	10	30	165
DKD-P 240	240	240	10	30	180
DKD-P 260	260	255	10	30	195
DKD-P 280	280	270	10	30	210
DKD-P 300	300	285	10	30	225
DKD-P 320	320	300	10	30	240
DKD-P 340	340	315	10	30	255
DKD-P 360	360	330	10	30	270

STRUCTURAL DESIGN SOFTWARE

The design of punching shear reinforcement DE+DKD is accomplished by using a calculation software based on Excel, which can be downloaded from our website (www.avi.at). A summary of the results is shown directly on the input screen. Additionally, detailed results can be printed.

AVI	PUNCHING SHEA Version 4.11	R REINFORCEMENT ^I	DE+DKD based on EN Copyright © 20	N 1992-1-1 01-22 AVI Ges.m.b.H.	
User name:		Proje	ct no.:		
Project name:		ltem:			
Concrete grade	Steel grade	DE and DKD-P			
C35/45 💌	B550 🔽	DE 140 🔽 DKD-P 2	200 Theight	ht of DE and DKD	
Dimensions of the slab		Column			
Slab thickness: h=	250 mm	Circular column, interior	Number=	1	
Effective depth:d=	205 mm	Column diameter:	C=	300 mm	
Penetration: h _E =	0 mm	-	-	- mm	
 Overhangs (edge and con 	rner columns)	 Flexural reinforcement at the s 	support		
	- mm	X-direction (perpendicula	ar to edge)∶a _{s,x} =	1828 mm²/m	
	- mm	Y-direction (in parallel to	edge): a _{s,y} =	1828 mm²/m	
- Adjust flexural reinforcement					
Increase flexural	reinforcement to	β automatically (acc.	to ÖNORM B 1992-1	-1, 9.4.6)	
avoid additional i	rows of DE	Load increase factor:	β _{chosen} =	1.15 ≥1.10	
Increase flexural	reinforcement to	Design value of load:	V _{Ed} =	675.0 kN	
avoid DKD-P	$(\beta V_{Ed} \le 1.65 V_{Rd,c})$	Design as column ba	ase σ_{soil} =	0.0 kN/m ²	
 Adjust punching shear rei 				DE 440	
	r of DKD-P er of DE)	DKD-P manually		DE 140	
(Increase number of DE)		(structurally effective: Min per 8 DE + 8 DKD-P Max per 8 DE + 8 DKD-P)			
Opening close to the	support: rectang	gular opening 🗾 🔻	Rotate the coordinate syst	em according to the sketch	
Deduction of control	l a enimenten				
- Reduction of contro				200	
🔘 mm 🔍 percen	t O degree Δ_{U} =	22.5 %			
Location of the opening					
Edge of opening	Centre				
Distance in X-direction	on: e _v =	1000 mm			
Distance in Y-direction: $\hat{e_y}=$		600 mm	BOO		
Dimensions of the opening					
Width in X-direction:	b _x =	300 mm	▲		
Width in Y-direction:	b _y =	300 mm	≻		
Angle due to the opening:	Δφ=	20.1 °	X		

CALCULATION OF PUNCHING SHEAR RESISTANCE

Required flexural reinforcement:

Top reinforcement:	$a_{s,x} = 1828 \text{ mm}^2/\text{m}$
Collapse reinforcement:	$A_{s,x} = A_{s,y} = 227 \text{ mm}^2$

 $a_{s,y} = 1828 \text{ mm}^2/\text{m}$ (minimum 2 bars per direction)

Required punching reinforcement:

Punching shear elements: 8 elements DE 140 Double-headed stud pairs: 8 elements DKD-P 200

WWW.AVI.AT

Punching shear reinforcement **BE-0K0**-03/23-E

Please direct technical inquiries to the Technical Service of AVI (support@avi.at).

Please direct your inquiries about availability and price of products to our sales department.

ALPENLÄNDISCHE VEREDELUNGS-INDUSTRIE GESELLSCHAFT M.B.H. Gustinus-Ambrosi-Straße 1–3 8074 Raaba-Grambach/Austria T +43 316 4005-0 F +43 316 4005-507 verkauf@avi.at www.avi.at

You can also find us on:

The content of this brochure has been created with the utmost care. Nevertheless, mistakes, inaccuracies, and typographical and printing errors are reserved. Technical changes are possible. Only the current brochure is valid (www.avi.at). The information in this brochure may be used by qualified persons only, taking into account the constraints of the project.